Sahifa fully responsive WordPress News, Magazine, Newspaper, and blog ThemeForest one of the most versatile website themes in the world.

 Impianto di pirolisi veloce per la produzione di olio a partire da biomassa lignocellulosica

TITOLARE: Spike Renewables Srl

Domanda di brevetto n. 102015000042343 data di deposito 05.08.2015

Brevetto codice NSS 102015000042343

Impianto per la liquefazione idroterma di biomasse

TITOLARE: Spike Renewables Srl / RE-CORD

Domanda di brevetto n. FI2015A000127 data di deposito 29.04.2015

Brevetto n. 1429628

Processo ed impianto per la produzione di Bioetanolo

TITOLARE: Spike Renewables Srl / ENEA

n. FI2009A000232 data di deposito 05.11.2009

Brevetto n. 1396891 codice NSS 102009901780671

Microturbina alimentata ad olio vegetale

TITOLARE: Spike Renewables Srl / IBT Srl

Domanda n. FI2011A000228 data di deposito 20.10.2011

Brevetto n. 1408243 codice NSS 102011901988906


DEVELTAR: Tar Separation and Conversion using Microwaves (TSC-MW) to improve conversion efficiency into electric energy from pyro-gasification

EUBCE 2015 23rd European Biomass Conference & Exhibition 2 June 2015, VIENNA – Session code IBO.12

F. Lenzi, A. Scova, V.Tumiatti, D. Chiaramonti, A.M. Rizzo, P. Taddei Pardelli

Abstract Lignocellulosic biomass can be converted into energy through thermochemical processes such as combustion, pyrolysis and gasification. Nowadays pyrolysis and gasification, and their combination, are of great interest given their high overall conversion rate into energy compared to direct combustion. In this field, tar removal from output gas is still an open issue when energy conversion of such gas through engines or turbines is considered (tar is a general expression for a complex mixture mainly made of heavy hydrocarbons or poly-aromatic hydrocarbons). DEVELTAR project was aimed to investigate a device for the removal of tars (cracking) from pyrolysis and gasification gaseous effluents in order to improve their quality as fuel. Tars are condensed and collected by cooling the gaseous effluents than transferred by a wet film of oil to an electricity based technologies with high power and low energy such as microwaves that was extensively examined for this specific purpose. The device developed during the research project was able to use the electrical energy efficiently concentrated towards the disruption of tar molecules, minimizing energy losses through a proper geometrical configuration and setup of process parameters. The main advantage of these technologies is the possibility to concentrate most of the energy on the target molecules avoiding a general increase of the overall energetic level (temperature). The electrical device is not intended for a specific pyrolysis or gasification technology, but as wide-ranging add-on module to be coupled within the gas purification line. The validation at industrial level of the abovementioned technologies, currently known at fundamental research level only, was done at the end of the project. The main foreseen advantage of this technological approach is a relevant improvement in terms of yield of combustible gas, i.e. electrical energy produced downstream, through a low additional energy expenditure, hence an improvement of  the net energy balance. The DEVELTAR project has been implemented by Sea Marconi Technologies Sas, a leading company in the field of energy and environment, as project leader. Sea Marconi has been supported by Spike Renewables Srl a partners with relevant competences in the field of interest and a leading engineering and consultancy company in the renewable energy field.

Keywords: pyro-gasification, gasification, tar removal, electric conversion efficiency, biomass, microwaves

Download article | Download presentation

BIODIET: development and test of lignocellulosic bioderivates for diesel engines to reduce emissions in the urban environment

ISAF 2011 and 2nd lignocellulosic bioethanol conference-14 October 2011, VERONA

Abstract The BIODIET project, supported by the Italian Ministry for Environment, investigates the possibility of using lignocellulosic biomass derived liquids for addition or blending to fossil fuels. The target fuel is diesel oil, i.e. compression ignition engines, thus addressing a different goal than the usual gasoline chain, in which bioethanol is normally blended. The possibility to penetrate the diesel market will open new possibilities for the introduction of sugar-derived liquid biofuels. The project will explore the options offered from the “sugar” chain derived from lignocellulosic biomass fractionation through pretreatment and hydrolysis. Either the direct use of ethanol blended at small amount in diesel oil, or derivatives from the sugar (bio-hydrocarbons) and/or the ethanol (oxygenated additives as acetals, ethers, esters, etc) will be considered. Literature analysis as well as lab scale study will be carried out, to select the most interesting products and processes. The selected option will be considered for engine test in a small bench, where performances and emissions will be monitored. The sustainability of the entire chain will be examined, and a specific LCA conducted on the preferred solution, while results disseminated at the widest possible audience.

Keywords: diesel oil . bioethanol . lignocellulosic biomass . sugars

  2nd generation lignocellulosic bioethanol: is torrefaction a possible approach to biomass pretreatment?

Published online 15 February 2011

Abstract Biomass pretreatement is a key and energyconsuming step for lignocellulosic ethanol production; it is largely responsible for the energy efficiency and economic sustainability of the process. A new approach to biomass pretreatment for the lignocellulosic bioethanol chain could be mild torrefaction. Among other effects, biomass torrefaction improves the grindability of fibrous materials, thus reducing energy demand for grinding the feedstock before hydrolysis, and opens the biomass structure, making this more accessible to enzymes for hydrolysis. The aim of the preliminary experiments carried out was to achieve a first understanding of the possibility to combine torrefaction and hydrolysis for lignocellulosic bioethanol processes, and to evaluate it in terms of sugar and ethanol yields. In addition, the possibility of hydrolyzing the torrefied biomass has not yet been proven. Biomass from olive pruning has been torrefied at different conditions, namely 180–280°C for 60–120 min, grinded and then used as substrate in hydrolysis experiments. The bioconversion has been carried out at flask scale using a mixture of cellulosolytic, hemicellulosolitic, β-glucosidase enzymes, and a commercial strain of Saccharomyces cerevisiae. The experiments demonstrated that torrefied biomass can be enzymatically hydrolyzed and fermented into ethanol, with yields comparable with grinded untreated biomass and saving electrical energy. The comparison between the bioconversion yields achieved using only raw grinded biomass or torrefied and grinded biomass highlighted that: (1) mild torrefaction conditions limit sugar degradation to 5–10%; and (2) torrefied biomass does not lead to enzymatic and fermentation inhibition. Energy consumption for ethanol production has been preliminary estimated, and three different pretreatment steps, i.e., raw biomass grinding, biomass-torrefaction grinding, and steam explosion were compared. Based on preliminary results, steam explosion still has a significant advantage compared to the other two process chains.

Keywords: Torrefaction . Lignocellulosic ethanol . Biomass pretreatment . Hydrolysis

Download article

Responsive ThemeForest Wordpress Theme Avada