GeoSmart | CE H2020

Spike Renewables is designing and manufacturing technological components to consolidate the operational flexibility of geothermal plants and reduce the problems of silica deposition.

Spike Renewables is designing and building technology components, such as heat exchangers and condensate storage tanks, to test geothermal fluids. These technologies will be integrated into thermodynamic cycles such as ORCs to provide a highly flexible operating capability of geothermal plants.

The activities are part of the GEOSMART project co-funded by the EC within the H2020 programme.

GEOSMART abstract:

Future energy systems will face serious operational challenges with system reliability due to fluctuations caused by progressive integration of solar and wind power. Reliable and sustainable energy sources that can be utilized in large parts of Europe and that are able to balance these fluctuations are needed. Geothermal energy has the potential to become an excellent source for both base and flexible energy demands, providing much lower environmental footprint than both fossil and biomass fuels, as well as much less risks and societal resistance than nuclear power.
There are however some techno-economic challenges which needs to be addressed to facilitate highly flexible operation of geothermal power plants. In GeoSmart, we propose to combine thermal energy storages with flexible ORC solutions to provide a highly flexible operational capability of a geothermal installation. During periods with low demand, energy will be stored in the storage to be released at a later stage when the demand is higher. As this approach does not influence the flow condition at the wellhead, critical infrastructures will be unaffected under variable energy generation. To improve efficiency, we also propose a hybrid cooling system for the ORC plant to prevent efficiency degradation due to seasonal variations.
Efficiency will be further improved by larger power plant heat extraction enabled due to a scaling reduction system consisting of specially design retention tank, heat exchanger, and recombining with extracted gases. The scaling reduction system has the potential to almost double power production of many medium enthalpy geothermal plants. Overall, GeoSmart technologies will drastically reduce geothermal energy costs, making it cost competitive with its fossil fuel-based counterparts.
To bring GeoSmart technology to TRL7/8, we will demonstrate it in a medium/high (Turkey) and low (Belgium) temperature fields to show its potential benefits and applicability in different settings.

Scroll to Top